EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths.

نویسندگان

  • Benjamin G Escott
  • Bheeshma Ravi
  • Adam C Weathermon
  • Jay Acharya
  • Christopher L Gordon
  • Paul S Babyn
  • Simon P Kelley
  • Unni G Narayanan
چکیده

BACKGROUND Children with lower-limb-length discrepancy require repeated radiographic assessment for monitoring and as a guide for management. The need for accurate assessment of length and alignment is balanced by the need to minimize radiation exposure. We compared the accuracy, reliability, and radiation dose of EOS, a novel low-dose upright biplanar radiographic imaging system, at two different settings, with that of conventional radiographs (teleoroentgenograms) and computed tomography (CT) scanograms, for the assessment of limb length. METHODS A phantom limb in a standardized position was assessed ten times with each of four different imaging modalities (conventional radiographs, CT scanograms, EOS-Slow, EOS-Fast). A radiation dosimeter was placed on the phantom limb, on a portion closest to the radiation source for each modality, in order to measure skin-entrance radiation dose. Standardized measurements of bone lengths were made on each image by consultant orthopaedic surgeons and residents and then were assessed for accuracy and reliability. RESULTS The mean absolute difference from the true length of the femur was significantly lower (most accurate) for the EOS-Slow (2.6 mm; 0.5%) and EOS-Fast (3.6 mm; 0.8%) protocols as compared with CT scanograms (6.3 mm; 1.3%) (p < 0.0001), and conventional radiographs (42.2 mm; 8.8%) (p < 0.0001). There was no significant difference in accuracy between the EOS-Slow and EOS-Fast protocols (p = 0.48). The mean radiation dose was significantly lower for the EOS-Fast protocol (0.68 mrad; 95% confidence interval [CI], 0.60 to 0.75 mrad) compared with the EOS-Slow protocol (13.52 mrad; 95% CI, 13.45 to 13.60 mrad) (p < 0.0001), CT scanograms (3.74 mrad; 95% CI, 3.67 to 3.82 mrad) (p < 0.0001), and conventional radiographs (29.01 mrad; 95% CI, 28.94 to 29.09 mrad) (p < 0.0001). Intraclass correlation coefficients showed excellent (>0.90) agreement for conventional radiographs, the EOS-Slow protocol, and the EOS-Fast protocol. CONCLUSIONS Upright EOS protocols that utilize a faster speed and lower current are more accurate than CT scanograms and conventional radiographs for the assessment of length and also are associated with a significantly lower radiation exposure. In addition, the ability of this technology to obtain images while subjects are standing upright makes this the ideal modality with which to assess limb alignment in the weight-bearing position. This method has the potential to become the new standard for repeated assessment of lower-limb lengths and alignment in growing children. CLINICAL RELEVANCE This study assesses the reliability and accuracy of a diagnostic test used for clinical decision-making.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patient absorbed dose comparison in CT and Stereoradiography (EOS) imaging during lower limb torsion evaluation using in-vivo and in-vitro dosimetry methods

Introduction: Accurate evaluation of femoral and tibial torsion is essential for children or adult with legs deformity, becuse incorrect legs morphogenesis can lead to pathological situation. CT scan is commonly used for the measurement of skeletal bone parameters. But, disability in imaging from standing and sitting posture and absorb dose of patients are deficits of this meth...

متن کامل

A Comparison of Patients Absorption Doses with Bone Deformity Due to the EOS Imaging and Digital Radiology

  Background: This study has aimed to measure the patient dose in entire spine radiography by EOS system in comparison with the digital radiography. Methods: EOS stereo-radiography was used for frontal and lateral view spine imaging in 41 patients in a prospective analytical study. A calibrated dose area product (DAP) meter was used for calibration of the DAP in EOS system. The accuracy and pr...

متن کامل

EOS imaging versus current radiography: A health technology as-sessment study

Background: EOS is a 2D/3D muscle skeletal diagnostic imaging system. The device has been developed to produce a high quality 2D, full body radiographs in standing, sitting and squatting positions. Three dimensional images can be reconstructed via sterEOS software. This Health Technology Assessment study aimed to investigate efficacy, effectiveness and cost-effectiveness of new emerged EOS imag...

متن کامل

Comparison of entrance skin dose in the hip region in the imaging of the lower extremity by CT scan and EOS

Introduction: Increasing in refer to computed tomography (CT-scan) imaging causes to increase in cumulative dose. Stereoradiography (EOS) is an X-ray imaging technology that, by eliminating scattering radiation, reduces patient's absorption dose and improves image quality.   Materials and Methods: This cross-sectional study was carried out in a hosp...

متن کامل

EOS imaging versus current radiography: A health technology assessment study

BACKGROUND EOS is a 2D/3D muscle skeletal diagnostic imaging system. The device has been developed to produce a high quality 2D, full body radiographs in standing, sitting and squatting positions. Three dimensional images can be reconstructed via sterEOS software. This Health Technology Assessment study aimed to investigate efficacy, effectiveness and cost-effectiveness of new emerged EOS imagi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of bone and joint surgery. American volume

دوره 95 23  شماره 

صفحات  -

تاریخ انتشار 2013